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The validity of the Born-Oppenheimer theorem permits the separation of 
nuclear and electronic motion in the quantum-mechanical treatment of mole- 
cular systems.’ This well-known theorem is often quoted in modern quantum- 
chemical textbooks, but rarely illustrated in detail [an exception being, e.g. ref. 
l(f), which contains a very detailed discussion for the diatomic molecule], and 
its importance in the calculation of molecular vibrational frequencies via ab 
initio quantum-mechanical calculations is mostly overlooked. It is the purpose 
of this paper to draw attention to these applications as well as to the activity in 
the field, but it does not aim to constitute a detailed review paper. The necessary 
wave-mechanical background to understand this paper can be found in any 
modern textbooke2 

1 Normal Vibrations and Interatomic Forces 
In the normal treatment of molecular-vibrational problems3 the potential which 
governs motions of the nuclei is taken to be harmonic. The general wave equation 
for the nuclear vibrations in a molecule is taken to be: 

where 01 refers to the nucleus cy with mass ma and Va2 is defined, as usual : 

Equation 1 can easily be transformed to the normal-co-ordinate form: 

* (a) M. Born and J. R. Oppenheimer, Ann. Physik, 1927, 84, 457; (b) M. Born, Festschrifi 
Gutt. Nachr. Math. Phys. Kf., 1951, 1, 1; (c) W. D. Hobey and A. D. McLachlan, J. Chem. 
Phys., 1960,33, 1695; (d) A. Dalgarno and R. McCarroll, Proc. Roy. Soc., 1956, A273, 383; 
( e )  A. D. Liehr, Ann. Physics (New York), 1957, 1, 221; (f) J. C. Slater, ‘Quantum Theory 
of Molecules and Solids’, Vol. I, McGraw-Hill, New York, 1963; (g) R. Lefebvre and M. G. 
Sucre, Internat. J. Quantum Chem. Symp., 1967, lS, 337. 
a For example, (a) C. J. H. Schutte, ‘The Wave Mechanics of Atoms, Molecules and Ions’, 
Edward Arnold (Publishers), London, 1968 ; (6) F. L. Pilar, ‘Elementary Quantum Chem- 
istry’, McGraw-Hill, New York, 1968. 
(a) See Ref. 2(a), Chapters 3, 12, and 14; (b) G. Herzberg, ‘Spectra of Diatomic Molecules’, 

D. van Nostrand Co., Princeton, 2nd edn., 1950; (c) G. Herzberg, ‘Infrared and Raman 
Spectra’, D. van Nostrand Co., Princeton, 1945; (d) E. B. Wilson, jun., J. C. Decius, and 
P. C. Cross, ‘Molecular Vibrations’, McGraw-Hill, New York, 1955. 
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3 N - 6  

using a Taylor expansion of the vibrational-potential energy around the equi- 
librium position, referring the leading term to the minimum position and 
keeping only the second (harmonic) term. Equation 3 then splits smoothly into 
the separate 3N - 6 vibrational Schrodinger equations: 

where Qk is the k-th normal co-ordinate and +kv the wave function describing 
the vibration of the k-th normal mode having a vibrational quantum number z, 
(v = 0, 1,2, . . . . .). Equation 4 is a harmonic-oscillator equation with solution: 

E = (Vk 4- &)hvk . 

V = 8fkk Qk2 3 

( 5 )  

(6) 

The harmonic potential-energy expression : 

generates the harmonic force constant : 
d2V 

dQk2 
fkk =- (7) 

and thus the force on each atom during the execution of the specific normal 
mode &:* 

F =  - f k k Q k  , 

where Q k  = 3 ~ 6 ~ ~ m q m  , 
m = l  

4m being the mass-weighted co-ordinates 

41 = JK Ax,; q 2  = J& AYi, etc.9 (10) 

referred to the displacement co-ordinates Ax,, Ay, ,  Az, of each nucleus 01 

during the execution of the vibration. 

2 The Born-Oppenheimer Approximation 
The computational difficulties of the general Schrodinger equation for a 
molecule : 

a 1 
(nuclei) (electrons) 

*It is to be noted that in actual calculations the atoms must move along their normal-mode 
trajectories; see the last part of this review. 
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do not allow the exact evaluation of the molecular-vibrational problem. In 
normal molecular orbital calculations the motion of the nuclei is ignored, i.e. it 
is assumed that the electrons move so fast that they instantaneously adjust 
themselves to the nuclear motion. Equation 11  is accordingly simplified by 
assuming the nuclei to be clamped in positions given by the vectors R,’, so that 
the first term in equation 11 is equal to zero, i.e. the Schrodinger equation 
describing the electronic motion and energy in this spec$c nuclear configuration 
i s :  

In this equation V(R,’; ri) is the total cuulombic energy between the nuclei (N) 
and electrons (e) in this internuclear configuration Ra’: 

v = v N N  -k v N e  -k vee , (1 3) 

and x(Ra’; rf) and Em,’; ri) are, respectively, the total electronic wave function 
and the total electronic energy. Ern,’) is obviously a minimum at R’ = Re, the 
equilibrium internuclear position. By shifting each nucleus a by arbitrary 
amounts (Ax,, Ay,, Az,) around the equilibrium internuclear position Re and 
calculating the resulting E(R,’; ri), a hypersurface V(R,’) may be determined. 

This is, perhaps, more easily visualised for the diatomic case where there are 
six nuclear co-ordinates (Ax,, Ay,, Az,, etc.) but if the five rotations are 
excluded, only the internuclear distance R is important in equation 12. The 
calculation of E(R’) at various R thus leads to the total-energy curve of the type 
given in Figure 1 for KF,4 for seven internuclear distances R. At R = Re the 
nuclei are experiencing no nett forces towards each other, but at R = 4-400 a.u. 
(marked 6 on the curve), the total energy of the molecule (KF), = 4.4 is higher 
than that of the molecule at the equilibrium position (KF), = 4.104. This means 
that there are nett forces acting upon the nuclei towards each other, pulling them 
as it were towards the position of equilibrium separation Re. At point 2 (R  = 
3.95 a.u.) the nuclei are experiencing nett forces away from each other. It is thus 
clear that one can regard the curve in Figure 1 as the graph of the potential- 
energy expression E(R,’) = V(R’) which regulates the vibrational motion of the 
two nuclei with respect to each other; it is obvious that V(R’) is not harmonic- 
in fact, it is very nearly described by a Morse-type potential function. 

Generalisation then immediately leads to the vibrational Schrodinger 
equation : 

a 

where +dR,’) is the vibrational wave function referring to the motion of the 
nuclei and Ev the vibrational energy. 

R. F. Matcha, J .  Chem. Phys., 1968,49, 1264. 
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Figure 1 The variation of total energy 
are taken from the work uf Matcha.3 

with interatomic distance R in KF. (The values 

This approximation is valid if the substitution: 

y ( R a ,  ri) = x(R,'; r i )  +@,') (1 5 )  
. _ _  - . - -  . -  - _ _ -  

intn pniiatinn 1 1  dnpc nnt vipld rpcrdiial tprmr whirh are laroe I t  tiirnr niit that  
A*>.,.. -.lIuu"vL* I I  U V I "  I*". J a w ' . .  L W " l Y U * l  .W*ll.V 1.11.w*1 U L 1  '-Lo". I *  C U L L l "  v u c  c 1 1 u c  

these residual terms are indeed negligibly small (Born-Oppenheimer approxima- 
tion). 

3 Solution of the Vibrational Problem : Diatomic Molecules 
Direct solution of equation 14 for diatomic moIecuIes, fitting the experimental 
points to an empirical equation in R, and substituting and solving for the 
vibrational eigenfunctions and eigenvalues (and hence for the vibrational fre- 
quencies of the transitions between the levels) is, in general, not possible. The 
general practice is to fit the points nearest to R e  to a parabolic potential V. The 
value of the gradient at R = Re then yields fR (equation 7), from which follows: 
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V R  = %(--) 1 fR ' 

This method is obviously not very accurate, and it is better to subject the points 
to a Dunham analysis5 by expanding the potential energy around the equilibrium 
position Re in terms of a polynomial function of a dimensionless parameter t,s 

The evaluation of the Dunham constants gives We, WeXe, weye, etc. in the 
spectroscopic term-value equation : 

Gv(cm-l) = W ~ ( V  + 8)  - WeXe(V  + &)' + weye(v + 9)3 - . . . , (18) 
where ve/c = we(cm-'). Matcha's analysis of KF4 yields (all values in cm-l): 

We = 448.5 (442.6); WeXe = 2.484 (2.430); weye = 0.04033; WeZe = 0*000861; 

the experimental values are given in brackets, where available. It is seen that this 
ab initio LCAO-SCF-Hartree-Fock calculation of Matcha yields the nearly 
correct molecular vibrational term values for the heavy molecule KF and thus 
definitely identifies the molecular (ionic) species found in the vapour of KF. The 
same approach was successfully applied to LiCl, NaF, and NaCl (see references 
in ref. 4). 

It must be remembered that the individual E(R') values which were calculated 
(Figure 1) are not simply the sum over the energies of the one-electron occupied 
molecular orbitals la, 20, . . . . . In, 27, . . . . . . etc., but are the totai energy 
values of the molecule at the various R'. Each E(R) is the sum of the following 
terms : 

(i) the potential energy of interaction between electrons and the nuclei; 
(ii) the potential energy of interaction between the electrons themselves ; 
(iii) the potential energy of internuclear repulsion; and 
(iv) the kinetic energy of the electrons. 
The break-down of the total energy into the kinetic energy T e  (of the electrons) 

and the potential energy of interaction Te (nuclear repulsion not added) is given 
in Figure 2; the total energy is: 

According to the virial theorem, at the equilibrium position of a diatomic 
molecule the following relation holds: 

(a) J.  L. Dunham, Phys. Rev , 1932,41, 721 ; (b) A. D. McLean, J. Chem. Phys., 1964, 40, 
2774; (c) R. M. Herman and S. Short, J. Chem. Phys., 1968,48,1266; (d )  Ref. 4 and references 
therein. 
6 See equations 9-1 1 of R. L. Matcha, J. Chern. Phys., 1967, 47, 4595; in this paper the 
theory is applied to LiCl. 
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Figure 2 The variation of 8,  and Te with R for KF. See text for discussion, (Replotted from 
the results of Mateha.') 

- 
In the case of KF, - V42Te x 1-ooOO. Equation 20 follows from the expressions 
for a diatomic molecule 

at R = Re, the gradient is zero, so that 
- 
Te = - E(R) 

Ve = + 2E(R) p 
- 

398 



Schutte 

from which equation 20 follows. (Note that ETotaI in the Born-Oppenheimer 
approximation includes the internuclear repulsion interaction !) Kolos and 
Wolniewicz7 use equations 21 and 22 to calculate the Re at which dE(R)/dR is 
equal to zero for the hydrogen molecule. 

In its simplest form, the Hartree-Fock Method for a molecule utilises a 
single-determinant antisymmetrised product wave function of spin-orbitals of the 
type: 

The X i ( i )  form an orthonormal set of one-electron orbitals composed of the 
product of a space part, di, and a spin part, which can be either a or /?. From 
equations 12 and 13 it is clear that the Hamiltonian operator &' of the electronic 
problem in the Born-Oppenheimer framework is : 

= Te -k Vee + VNe -k VNN , (26) 

the V-terms being given by the appropriate coulombic terms: 

Equation 26 may be contracted to: 

Z= C H  ~ ( i )  + C(e2/rii) , 
i i , i  

where H N ( ~ )  is the so-called 'core' Hamiltonian, and the last term the electron- 
repulsion term. The energy of the state with eigenfunction YZ is given by 

E = (Yz I A? I Yi) . (31) 
This is broken down by the substitution of equations 25 and 30 into two classes 
of integrals, viz. : 

(i) the core integrals 

li =.= ( X i  I X" I X i >  , 
(ii) the electron repulsion integrals: 

Jij = (iiljj); (i # i) 
~ i j  = (qlj i);  ( i  + j )  . 

7 W. Kolos and L. Wolniewicz, J .  Chern. Phys., 1966,45, 509. 
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Then it follows that: 
N N 

k kl 
E = ZIk i c ( J k l  - Kkl) . (35) 

The forms of the individual orbitals X i  (i.e. that of r$i, the space parts) are now 
determined via the variation method, keeping the condition of orthonormality 
on the set of X i ' s .  This leads to the problem being simplified into a set of 
(apparently) one-electron problems, the Hartree-Fock set of equations : 

P ( l ) X i ( l )  = E X ( 1 )  , (36) 

with the Hartree-Fock operator defined by: 

G(l) is a one-electron operator (coulomb-exchange) which describes the repelling 
effects of all other electronic charges on the electron which is constrained to be 
in X N .  The eigenvalues of the one-electron Hartree-Fock operator F(1) are then 

This means that the total Hartree-Fock energy is, in terms of the orbital eigen- 
values and the electron-repulsion integrals : 

or 

This illustrates the statement above that the total Hartree-Fock energy is not 
simply the sum of the Hartree-Fock individual orbital energies-the core 
energies of equation 32 must be added to Z E ~  or the electron-repulsion terms 
subtracted, as given by equations 39 and 40. Equation 37 is written here as if it 
were spin-independent. This is the case in which the term symbol of the molecule 
is 2, i.e. there are N electrons distributed in pairs with spin a and 18 over the 
N/2 space orbitals $2, . . . . . r$,vl2>.) The Roothaan scheme, where the r$i 

are approximated by the linear combination : 

$i = 2 C k i $ k o  9 (41) 
k-1 

leads to the same type of equations.8 
There is the tendency to consider only the contribution of the Hartree-Fock 

orbital energy C E O  and its variation with internuclear parameters in discussions 

* (a) C. J.  J. Roothaan, Rev. Mod. Phys., 1951,23,69; (6)  Ref. I ( f ) .  

i 
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Figure 3 The variation of the orbital energies E i  of KF, replotted from the results of Matcha.4 
See text. 

regarding the bonding situation in molecules. Thus, the variation of the orbital 
energies E of KF, which is graphically shown in Figure 3, can be used in a 
discussion of the bonding between 3.5 and 4.8 a.u. This is not quite correct 
because, if one chooses to ignore the repulsion effects of equations 39 and 40, 
then 
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Em01 = 22Ei <EHartree-Fock (42) 
at all values of R. The forces acting on the nuclei at all values of R (excepting 
R = R B )  are thus due to both the one-orbital energies of the Hartree-Fock 
Scheme and the repulsion integrals Jij and Ktj. These forces determine the 
vibrational term values [we(v + 4) + anharmonic terms] of equation 18, and 
thus the infrared transition frequencies of the molecule in the electronic state 
under consideration. To judge the r6le played by the sum of the orbital energies, 
the values of the EZ’S, Jij, and Kij should be available for a set of selected values 
of R. The last two quantities are usually not tabulated in the papers dealing with 
these calculations, so that usually it is difficult to judge the exact ‘origin of the 
potentials’ which sum together to give a curve of the type of Figure 1. Most 
authors, however, give values for Fe and T,, so that the relative importance of 
the potential and kinetic energies may be evaluated (e.g. Figure 2). (It is worth 
noting that any €2  is equal to the ionisation energy of the electron in that orbital 
by virtue of Koopmans’ the~rem.~)  

A deeper insight into the origin of the forces on the nuclei can be gained via 
the Hellmann-Feynman theorem; this will be the subject of a subsequent paper. 

The only molecule for which the variation of €2 (and thus EHartree-Fock) can be 
directly calculated, is H2+.lo The calculated potential for H2+ is also amenable to 
a direct solution of the vibration-rotation problem.ll The accurate variational 
study of Kolos and Wolniewicz12 leads to a vibrational potential for the ground 
state of the H, molecule which can be used to integrate the vibrational- 
rotational Schrodinger equation n~merically;~~ the results are very encouraging 
(the vibrational wave functions plotted for H2 for z, = 0, 1 ,  2, show clearly the 
anharmonicity of the vibration). The differences between the experimental 
values are + 0.91, + 0.80, + 1-26, + 0.85 cm-l respectively, for the D = 0, 1,  2, 
3 states of H,; the experimental values are 4161.13, 3925.97, 3695.24, and 
3468.01 cm-l re~pective1y.l~ 

4 Polyatomic Molecules 
More and more molecules are being treated by ab initio LCAO-MO calculations 
within the Hartree-Fock scheme. Lf such calculations are carried out over a 
range of internuclear distances in the clamped nuclei approximation, the resulting 
potential-energy curve can be used to calculate the normal modes of the molecule. 
In most cases it is not feasible to try to determine the whole potential-energy 
hypersurface of the molecule, but to make use of the concept of normal vibration 
as well as the symmetry of the molecule. 

The easiest type of calculation is the calculation of the Hartree-Fock total 
energy of symmetrical molecules, and hence the potential energy governing the 

a T. Koopmans, Physica, 1933,1, 104. 
lo H. Wind, J .  Chem. Phys., 1965,42, 2371 and references therein. 
l1 H. Wind, J. Chem. Phys., 1965,43,2956. 
l8 W. Kolos and L. Wolniewicz, J .  Chem. Phys., 1964,41,3663. 
l3 L. Wolniewicz, J. Chem. Phys., 1966,45, 515. 
l4 G. Herzberg and L. L. Howe, Canad. J .  Phys., 1959,37,636. 
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‘breathing mode’, by keeping the central (heavy) atom constant and bringing 
the lighter atoms adiabatically in along the main symmetry axes of the molecule. 
This means that the total Hartree-Fock energy of the molecule is effectively a 
one-dimensional function depending only upon the parameter R, the distance 
between the central atom and the peripheral atoms; the resulting potential curve 
is analogous to that of Figure 1, the orbital energy variation may be expressed 
as in Figure 3, and the virial partitioning of the energy proceeds as in Figure 2. 

€H-F 
( har t r e e  1 

~ 5 4 0 0  

*550(3 

-560C 

05700 

-199 ~ 5 8 0 0  
I -75 2.0 2- 25 

Figure 4 The Hartree-Fock potential energy of the stretching vibration of the linear ion (FHF)-. 
The energy E was calculated at the following F-H separations (in a.u.) where the energies (in 
hartrees) are given in brackets: 1.900 (- 199*55042), 2.000 (- 199*56707), 2.05 (- 199.571 13), 
2.100 (- 199.57296), 2-15 (- 199.57291), and 2.200 (- 199.57216). Data from McLean and 
Yoshimine.16 
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In Figure 4 the results of McLean and Yoshimine16 for the breathing mode of 
the symmetrical bifluoride ion (FHF)- are plotted. It is seen that EHartree-Fock 

goes through a minimum at an equilibrium value of RF-Ix N 2.1 3 a.u. (= 1 -1 21 A) 
(the experimental value is 1.13 f 0.01 A16) and that there is no sign of a double- 
minimum in the potential. This means that the method described above 
(Dunham’s Method) can be used to determine We etc. The reader can also try 
to fit the four lowest points to a parabolic potential and to differentiate the 
resulting expression analytically to obtain the stretching force-constant k and 
thus W .  The McLean-Yoshimine tables can also be used to calculate the 
frequency of, e.g. v1 of CO,. 

The same method can be applied for the breathing vibration of tetrahedral 
molecules, and encouraging results were obtained, although the absolute 
accuracy of the E calculations was not large-see e.g. the calculations on 
CHI, SiH4, and NH4+.17 

This method is not directly applicable to the stretching mode of unsym- 
metrical molecules like FCN, etc., where the central atom moves during the 
‘stretching’ normal mode. In such cases the atoms should be clamped along their 
actual normal-mode trajectories. A graph of the normal mode Q vs. EHartree-Fock 

should then be similar to Figures 1 and 4, and the frequency of the mode can be 
calculated. 

In a very interesting ab initiu LCAO-MO calculation of the electronic 
structure of the nitrous oxide molecule in both the NNO and NON configura- 
tions, as well as the azide ion N3-, Buenker and PeyerimhofP determined the 
bending force constants. The bending force constant for NNO is 6-8 (1O-l2 erg 
rad-l) while the experimental value is 6-9. In the ‘bending mode’ calculated by 
Buenker and Peyerimhoff, the atoms do not follow the actual trajectories of the 
bending normal mode because the motion of the central atom was ignored. This 
means that the N-N and N-0 distances were kept constant and that only the 
angle 8 between the bonds was varied, i.e. the calculated ‘bending mode’ is not 
quite a normal mode, but a superposition of two or more of the molecular 
normal modes with phase angles yz. The calculated mode for the ‘bending’ in 
the ground state is nevertheless near enough to the real bending mode so that 
the general characteristics of the potential opposing a bending _vibration become 
quite clear. The potential dependent upon the angle 8 (= “0) is very much 
‘flatter’ than those dependent upon the direct variation of the internuclear 
distances R. This means, in terms of equation 1, that the energy levels Eku of 
the bending mode are much closer spaced and that the corresponding transitions 
between them occur at much lower frequencies than the stretching frequencies in 
the same molecule. This is qualitatively shown in Figure 5, referred to the normal 
mode Q. (Note: the authors explain the almost universal occurrence of the most 

15 A. D. McLean and M. Yoshimine, Supplement to the paper ‘Computation of Molecular 
Properties and Structure’, I.B.M. Journal of Research and Development, Nov. 1967. 
16 S. W. Peterson and H. A. Levy, J .  Chem. Phys., 1952, 20, 704; the F-F distance is 2-26 f 
0.01 A, see L. Helmholz and M. T. Rogers, J.  Amer. Chem. Soc., 1939,61,2590. 
17 E. Menna, R. Moccia, and L. Randaccio, Theor. Chim. Acta, 1966,4,408. 
18 S. D. Peyerimhoff and R. J. Buenker, J .  Chem. Phys., 1968,49,2473. 
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Figure 5 The bending and stretching potential curves (schematic). The bending curve i s  ‘flatter’ 
than the stretching curve, generates more closely-spaced eigenvalues and hence transitions 
orcrirring at lower frequencies (longer wavelengtlis). 

electropositive element in the middle of the triatomic molecule ABC in terms of 
the stabilisation of the n-MO’s which are occupied; hence NNO forms and not 
NON.) 

Even degenerate vibrational modes of the ground electronic state can be 
treated in this way, i.e. by clamping the nuclei on their actual normal-mode 
trajectories, so that the potential becomes effectively that of a one-dimensional 
(anharmonic) oscillator. No calculations have appeared using this principle. 

It is thus clear that nb initio LCAO-MO calculations within the Hartree-Fock 
scheme and the Born-Oppenheimer approximation yield vibrational potential- 
energy curves which enable the theoretical determination of the molecular 
vibrational transition frequencies in the rotationless electronic ground state. The 
same procedure is applicable for non-degenerate vibrational modes of non- 
closed-shell molecules (e.g. the n-state of excited CO,), hut the Born-Oppen- 
heimer approximation then breaks down for degenerate vibrations because of the 
coupling of vibrational angular momentum and the electronic angular 
momentum. 

The principles of force-constant-analysis are more fully discussed by Gerratt 
and Mills.20 

l 9  (a)  G.  Herzberg and E. Teller, Z .  phys. Chem., 1933, 21B, 410; (6)  R. Renner, Z .  Physik., 
1934,92, 172. 
8o J. Gerratt and I. M. Mills, J.  Chem. Phys., 1968,49, 1719, 1730. 
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